Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Restoration of degraded estuarine oyster reefs typically involves deploying recycled oyster shell. In low‐salinity, low‐predation areas of estuaries, high‐volume shell deployments are known to improve flow conditions and thus oyster survival and growth. It is also hypothesized that the physical structure of restored reefs could suppress foraging by oyster predators in high‐salinity, high‐predation zones. That hypothesis is untested. Given limited resources, it is important to determine how much shell is needed for successful restoration and whether there are diminishing returns in shell addition. In Apalachicola Bay, Florida, we manipulated shell volume on an oyster reef to create three 0.4 ha areas of low (no shell addition), moderate (153 m3shell), and high (306 m3shell) habitat structure. We repeated experiments and surveys over 2 years to determine if restoration success increased with habitat structure. Predation on oysters was greater on the non‐shelled area than on the reshelled reefs, but similar between the two reshelled reefs. Oyster larval supply did not differ among the reef areas, but by the end of the experiment, oyster density (per unit area) increased quadratically with habitat structure, plateauing at high levels of structure. Model selection indicated that the most parsimonious explanation for these patterns was that increased habitat structure reduced predation and increased overall recruitment, but that the higher reshelling treatment did not have better outcomes than moderate reshelling. Thus, restoration could be optimized by deploying a moderate amount of shell per unit area.more » « less
- 
            ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
